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you are the steward 
of your science

Show your passion for the subject.


Be a good explainer.


Resist visual tropes, fluff and garnish.




design is a process
Thank you for your submissions!


My redesigns are not the “best and only” options. They’re merely better options.


When I first look at a figure, I typically know what needs fixing


but I don’t always know how to fix it.



design is a set of choices
When you speak, you generally know


what / why / why now


you’re saying something.


It’s the same with design except time 

is replaced by space.




you’re 90% of the tool 
Good design is never due to software expertise. 


Know your software enough to make your ideas possible.


Learning tool XYZ will not make you a better communicator.



emphasize data
make other elements visually subordinate 
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conclude first 
and explain early

don’t squirrel important information 

into the least accessible part of the poster





Figure 1.

Associations between financial security, emotional wellbeing and adolescent health behaviors.

Exploring the impact of financial insecurity on adolescent health behaviors: 

How has COVID-19 influenced screen time, physical activity and diet quality?
Iyoma Y. Edache1, MSc    Mark Pitblado2    Sarah M. Hutchinson3, PhD    Louise C. Mâsse1, PhD

1School of Population and Public Health    2Department of Microbiology & Immunology    3Department of Pediatrics, University of British Columbia

OBJECTIVES

To investigate the link between financial security, parent and 

adolescent emotional wellbeing and adolescents’ health 

behaviors during the COVID-19 pandemic.

IMPLICATIONS

Study results highlight the role of emotional wellbeing in the pathway 
through which financial security impacts adolescent health behaviors. 
As public policy addressing financial security may indirectly improve 
adolescent health behaviors, our findings will inform COVID-19 public 
health priorities — specifically, family-based efforts to support and 
promote adolescent health behaviors and emotional wellbeing.

BACKGROUND

The COVID-19 pandemic disrupted Canadian families’ daily routines and 
social interactions due to government-mandated physical distancing 
restrictions. Three out of 10 Canadians report that COVID-19 has 
negatively impacted their ability to meet financial obligations1. Health 
behaviors have also been impacted as physical activity has decreased while 
screen time and food consumption have increased2. Cumulatively, these 
disruptions have increased parent and adolescent emotional strain2.

ANALYTICAL SAMPLE AND MEASURES

Parents and grade 7 student pairs (n = 355) completed an online survey 
in May –June 2020, assessing family financial security, parent and teen 
emotional wellbeing (self-esteem, optimism, worry and depression) and 
teen health behaviors (screen time and physical activity). Adolescents 
completed three 24-hour dietary recalls using the ASA24 platform. 
Dietary quality was computed using the Healthy Eating Index (HEI)3, 
which evaluates compliance of reported intake with national dietary 
recommendations.

STATISTICAL ANALYSIS

Structural equation modelling was used to examine linear relationships 
using the Stata software (version 15.1).

Statistics Canada’s March 2020 Canadian Perspectives Survey Series

Carroll, N., Sadowski, A., Laila, A., Hruska, V., Nixon, M., Ma, D. W., & Haines, J. 
(2020). Nutrients, 12(8), 2352.

Guenther, P. M., Reedy, J., & Krebs-Smith, S. M. (2008). Journal of the American 
Dietetic Association, 108(11), 1896-1901
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Table 1.

Characteristics of participants (n = 355).
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OBJECTIVES

To investigate the link between financial security, parent and 

adolescent emotional wellbeing and adolescents’ health 

behaviors during the COVID-19 pandemic.

IMPLICATIONS

Study results highlight the role of emotional wellbeing in the pathway 
through which financial security impacts adolescent health behaviors. 
As public policy addressing financial security may indirectly improve 
adolescent health behaviors, our findings will inform COVID-19 public 
health priorities — specifically, family-based efforts to support and 
promote adolescent health behaviors and emotional wellbeing.

BACKGROUND

The COVID-19 pandemic disrupted Canadian families’ daily routines and 
social interactions due to government-mandated physical distancing 
restrictions. Three out of 10 Canadians report that COVID-19 has 
negatively impacted their ability to meet financial obligations1. Health 
behaviors have also been impacted as physical activity has decreased while 
screen time and food consumption have increased2. Cumulatively, these 
disruptions have increased parent and adolescent emotional strain2.

ANALYTICAL SAMPLE AND MEASURES

Parents and grade 7 student pairs (n = 355) completed an online survey 
in May –June 2020, assessing family financial security, parent and teen 
emotional wellbeing (self-esteem, optimism, worry and depression) and 
teen health behaviors (screen time and physical activity). Adolescents 
completed three 24-hour dietary recalls using the ASA24 platform. 
Dietary quality was computed using the Healthy Eating Index (HEI)3, 
which evaluates compliance of reported intake with national dietary 
recommendations.

STATISTICAL ANALYSIS

Structural equation modelling was used to examine linear relationships 
using the Stata software (version 15.1).
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Age (years)
≤24

25–34
35–44
45–54
55–64
≥65

State

Are you concerned
about Newcastle disease?

SA/WA
NSW
QLD
TAS
VIC

17.2
28.6
36.1
43.8
50.0
60.0

1.33
1.37
1.85

203.00
2.24

0.86
0.82
0.79
0.80
0.79

3.8
3.9
6.3
7.6
9.4

0.8
0.9
1.7
1.9
2.4

27.6
26.9
42.0
51.5
62.4

0.007

†

‡

–
–
–
–
–

31.8
47.5
47.4
33.3
64.4

0.59
0.49

–0.23
1.04

0.35
0.36
0.45
0.45

1.8
1.6
0.8
2.8

0.9
0.8
0.3
1.2

3.6
3.3
1.9
6.9

0.007

–
–
–
–

State
SA/WA

NSW
QLD
TAS
VIC

15.3
30.3
17.9
24.4
31.1

1.01
0.18
0.91
1.03

0.46
0.47
0.52
0.51

2.8
1.2
2.5
2.8

1.1
0.5
0.9
1.0

6.6
3.0
7.1
7.8

0.040

–
–
–
–

P Yes (%) β SEβ OR 95% CI

46.0

Years owning poultry
1–5

6–15
16–29
≥30

Sex
Female

Male

51.4
28.4
45.2
33.2

–1.54
–0.75
–1.39

0.51
0.49
0.45

0.2
0.5
0.2

0.1
0.2
0.1

0.6
1.2
0.6

0.006

–
–
–

44.2
33.9 –0.56 0.30 0.6 0.3 1.0

0.066

–

35.2
Do you keep a written record

of treatments given to your birds?

Years owning poultry
1–5

6–15
16–29
≥30

Sex
Female

Male

45.9
29.7
20.5
18.0

–0.71
–1.44
–1.49

0.51
0.54
0.48

0.5
0.2
0.2

0.2
0.1
0.1

1.3
0.7
0.6

0.006

–
–
–

39.5
17.9 –0.79 0.33 0.5 0.2 0.9

0.017

–

35.2
Have you contacted a veterinarian in the

past 12 months for the health of your birds?

† Out of n = 398 survey participants.

‡ For first factor level, β = 0, OR = 1, SEβ and 95% CI are not defined.
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Figure 1.

Associations between financial security, emotional wellbeing and adolescent health behaviors.
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OBJECTIVES

To investigate the link between financial security, parent and 

adolescent emotional wellbeing and adolescents’ health 

behaviors during the COVID-19 pandemic.

IMPLICATIONS

Study results highlight the role of emotional wellbeing in the pathway 
through which financial security impacts adolescent health behaviors. 
As public policy addressing financial security may indirectly improve 
adolescent health behaviors, our findings will inform COVID-19 public 
health priorities — specifically, family-based efforts to support and 
promote adolescent health behaviors and emotional wellbeing.

BACKGROUND

The COVID-19 pandemic disrupted Canadian families’ daily routines and 
social interactions due to government-mandated physical distancing 
restrictions. Three out of 10 Canadians report that COVID-19 has 
negatively impacted their ability to meet financial obligations1. Health 
behaviors have also been impacted as physical activity has decreased while 
screen time and food consumption have increased2. Cumulatively, these 
disruptions have increased parent and adolescent emotional strain2.

ANALYTICAL SAMPLE AND MEASURES

Parents and grade 7 student pairs (n = 355) completed an online survey 
in May –June 2020, assessing family financial security, parent and teen 
emotional wellbeing (self-esteem, optimism, worry and depression) and 
teen health behaviors (screen time and physical activity). Adolescents 
completed three 24-hour dietary recalls using the ASA24 platform. 
Dietary quality was computed using the Healthy Eating Index (HEI)3, 
which evaluates compliance of reported intake with national dietary 
recommendations.

STATISTICAL ANALYSIS

Structural equation modelling was used to examine linear relationships 
using the Stata software (version 15.1).

Statistics Canada’s March 2020 Canadian Perspectives Survey Series
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INTRODUCTION

Placental gene regulation is crucial in the 

maintenance of a healthy pregnancy; aberrant 

expression can lead to severe complications in both 

mother and fetus [1].

MicroRNAs (miRNAs) are known regulators of gene 

expression, and cause repression by destabilizing 

target mRNA molecules [2,3].

Several factors are associated with changes in gene 

expression [4,5]. However, these factors have not yet 

been fully elucidated in the placenta.

METHODS

30 placental samples were previously subjected to 

RNA-seq, enriching for small RNAs. 

KEY OBSERVATIONS

Placental gene regulation is influenced by numerous 

variables, both biological and technical.

There still exist undiscovered, novel placental 

miRNAs; their characterization would provide better 

understanding of the human placenta and improved 

care of pregnant women and the fetus.

Samples distinctly separate by trimester, especially for T1. 

Samples did not group by sex or condition status (control/NTD). 

This may be due to lack of power to detect this association.
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Does placental miRNA expression differ by inherent 

biological and extrinsic technical variables?

Yes, but it’s more complicated than that.
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sample with RPM ≥1. Relative Log Expression (RLE) 
normalization was applied, which performs best for 
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Linear regression was applied to identify 

Differentially-expressed (DE) miRNAs 

were identified using linear regression 

with Benjamini-Hochberg multiple test 

correction at FDR = 0.05.

6 miRNAs were commonly DE for T1, T2 

and Term samples. Two were novel.

All showed an overall negative 

correlation with trimester. No miRNAs 

were DE by sex or condition.

Both trimester and sequencer flow cell 

were associated with PC1, explaining 

48% of the variance in observed, fol-

lowed by condition.
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INTRODUCTION

Placental gene regulation is crucial in the 

maintenance of a healthy pregnancy; aberrant 

expression can lead to severe complications in both 

mother and fetus [1].

MicroRNAs (miRNAs) are known regulators of gene 

expression, and cause repression by destabilizing 

target mRNA molecules [2,3].

Several factors are associated with changes in gene 

expression [4,5]. However, these factors have not yet 

been fully elucidated in the placenta.

METHODS

30 placental samples were previously subjected to 

RNA-seq, enriching for small RNAs. 

KEY OBSERVATIONS

Placental gene regulation is influenced by numerous 

variables, both biological and technical.

There still exist undiscovered, novel placental 

miRNAs; their characterization would provide better 

understanding of the human placenta and improved 

care of pregnant women and the fetus.
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Samples distinctly separate by trimester, especially for T1. 

Samples did not group by sex or condition status (control/NTD). 

This may be due to lack of power to detect this association.
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THE PLACENTA IS NOT AN ASEXUAL ORGAN

Patterns of sex-specific autosomal DNA methylation 
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SEX-SPECIFIC PATTERNS OF DNA METHYLATION

Sex differences exist in healthy pregnancy and certain 

adverse perinatal outcomes, and appear to be partially 

mediated by the placenta1.

The fetus and placenta possess the same sex 

chromosome complement, except in rare cases.

Placental DNA methylation (DNAme) differs by sex due 

to X chromosome inactivation, but other features, such 

as fetal sex hormones and autosomal DNAme likely 

contribute to placental sex differences as well.

We hypothesize that sex-specific patterns of DNA 

methylation exist at autosomal loci in the human 

placenta, and may be related to sex-specific placental 

function.

ROBUST SEX-SPECIFIC AUTOSOMAL DNAme SIGNATURES EXIST 

IN THE HUMAN PLACENTA.

Placental autosomal DNAme patterns are continuous between the 

sexes, rather than discrete. This may be related to interactions between 

autosomal and X chromosomal loci; other unmeasured biological factors 

may contribute (e.g. Fetal or maternal sex hormones).
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh eu-

ismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim 

veniam, quis. 

Sex-specific autosomal DNAme reflects sex-specific function of the 

human placenta and may provide insight into fetal health sex disparities, 

but is not sufficient to explain sex-specific outcomes.
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy nibh eu-

ismod tincidunt ut laoreet dolore magna aliquam erat volutpat. Ut wisi enim ad minim 

veniam, quis.

Illumina 450K DNAme data from healthy normal placentas were obtained 

from publicly available datasets (>37 weeks gestation, no preeclampsia, no 

known chromosomal abnormalities). Sample sex was assessed with XY 

probes. Data were BMIQ normalized and filtered to remove poor quality, 

non-variable, non-specific, and XY probes (nfilt=161,408). Log-transformed 

M values at 324,104 autosomal CpG sites used in downstream analysis.

Amy M Inkster1,2, Victor Yuan1,2, Chaini Konwar1,2, Allison M Matthews1,3, Carolyn J Brown2, Wendy P Robinson1,2

GEO Accession Samples (n, % female)

GSE73375, GSE74738, 

GSE75248, GSE100197,

GSE100857, GSE128827 (341, 51%)

GSE70453 (validation) (72, 47%)

GSE115508 (validation) (44, 45%)

Genome-wide placental DNAme is not sex-specific Sex-specific differentially methylated sites are biologically interesting

Autosomal DNAme signatures are not sexually dimorphic

Samples & Methods

Sex-specific DNAme 

patterns validate in 

independent cohorts

Specific autosomal CpG sites are differentially 

methylated by sex 

autosomal β

chrX β

–0.04

–0.05

–0.06

0.55

0.50

0.45

–0.10 0.100

0.44 0.48 0.500.46

PC1

PC2FDR

< 0.05

< 0.01

Δβ > 0

24,715

14,108

> 5%

2,942

2,682

> 10%

166

166

> 20%

4

4

R = 0.56

p < 10–14

R = 0.67

p < 10–15

This trend is significantly associated with

Increased average LINE1 DNAme

Positive or negative deviations from population mean X 

chromosome DNAme.

This trend is not associated with

Outlying autosomal DNAme (% highly variable probes)

Sex annotation errors

Technical factors or batch effects.

DM loci proximity to sex-hormone binding sites.

Biological variables (genetic ancestry, gestational age, 

birthweight, maternal age).

Females with outlying X-linked DNAme relative to 

population trends have more male-like DNAme at top 

autosomal DM sites, and vice-versa.

Thank you to all patients and families who kindly donated samples, and members of the 

Robinson Lab, especially WPR, VY, MSP, and GDG for valuable feedback. This work was 

supported by the Department of Medical Genetics (UBC) and the Canadian Institutes of 

Health Research (ICT-163379,CIHR SVB-158613).

[1] Clifton 2010. Placenta 21:S33-S39. [2] Teschendorff et al. 2013. Bioinformatics 29:189-96. 

[3] Liu et al. 2008. J Am Stat Assoc 103:1281. [4] Suzuki & Shimodaira 2006. Bioinformatics 

12:1540-42. [5] Kuleshov et al. 2016. Nucleic Acids Res gkw377.
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Samples fall across a continuum of sex when investigating DNAme patterns at top 166 DM loci.
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loci, suggesting a robust sex effect 

at these loci. P-value from sigClust2. 

Cluster stable (pvclust) at AU > 80. 

Significant patterns of differential 

DNAme by sex validate at 90% of 

loci in GSE70453 and GSE115508 

(R = 0.62, p< 2.2e-16).

higher expression in female placentas

324,104 autosomal CpGs. Adjusted for GA, ethnicity, and dataset.
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esse molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero eros et accumsan et iusto odio dignissim 
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THE PLACENTA IS NOT AN ASEXUAL ORGAN

Patterns of sex-specific autosomal DNA methylation 
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SEX-SPECIFIC PATTERNS OF DNA METHYLATION

Sex differences exist in healthy pregnancy and certain 

adverse perinatal outcomes, and appear to be partially 

mediated by the placenta1.

The fetus and placenta possess the same sex 

chromosome complement, except in rare cases.

Placental DNA methylation (DNAme) differs by sex due 

to X chromosome inactivation, but other features, such 

as fetal sex hormones and autosomal DNAme likely 

contribute to placental sex differences as well.

We hypothesize that sex-specific patterns of DNA 

methylation exist at autosomal loci in the human 

placenta, and may be related to sex-specific placental 

function.

ROBUST SEX-SPECIFIC AUTOSOMAL DNAme SIGNATURES EXIST 

IN THE HUMAN PLACENTA.

Placental autosomal DNAme patterns are continuous between the 

sexes, rather than discrete. This may be related to interactions between 

autosomal and X chromosomal loci; other unmeasured biological factors 

may contribute (e.g. Fetal or maternal sex hormones).
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Sex-specific autosomal DNAme reflects sex-specific function of the 

human placenta and may provide insight into fetal health sex disparities, 

but is not sufficient to explain sex-specific outcomes.
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Illumina 450K DNAme data from healthy normal placentas were obtained 

from publicly available datasets (>37 weeks gestation, no preeclampsia, no 

known chromosomal abnormalities). Sample sex was assessed with XY 

probes. Data were BMIQ normalized and filtered to remove poor quality, 

non-variable, non-specific, and XY probes (nfilt=161,408). Log-transformed 

M values at 324,104 autosomal CpG sites used in downstream analysis.
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Genome-wide placental DNAme is not sex-specific

There were no significant differences by 

sex in average DNAme at all autosomal 

loci or at Alu or LINE1 elements.
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Sex-specific DNAme 

patterns validate in 

independent cohorts

Specific autosomal CpG sites are differentially 

methylated by sex 
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loci, suggesting a robust sex effect 
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Significant patterns of differential 

DNAme by sex validate at 90% of 

loci in GSE70453 and GSE115508 

(R = 0.62, p< 2.2e-16).

324,104 autosomal CpGs. Adjusted for GA, ethnicity, and dataset.
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Fetal Alcohol Spectrum Disorder

Fetal Alcohol Spectrum Disorder (FASD) is caused by fetal exposure to alcohol 
consumed by mothers during pregnancy [1]. It is the most common preventable 

cause of developmental disability in 
Canada — over 3000 Canadian 
newborns diagnosed annually [2]. 
FASD is characterized by abnormal 
brain development, cognitive/learning 
deficits, behavioural issues, and/or 
specific patterns of physical defects. 

Research in mouse models implicates ethanol-induced apoptosis (i.e. 
programmed cell death) as one process contributing to disruption in early brain 
development [4]. Severity of ethanol’s effects appears to vary depending on 
genetic background; how and which genes are involved in susceptibility or 
resistance to alcohol remain largely unknown. Genetic influences may be important 
for screening, prevention, and therapeutic treatment of FASD.

Objectives

Demonstrate genetic differences in vulnerability to the 
apoptotic effects of prenatal alcohol exposure. Use 
Quantitative Trait Locus (QTL) analysis to identify genes 
involved in susceptibility or resistance to ethanol-induced 
apoptosis in the developing brain.

Conclusions

There is significant variation in vulnerability to ethanol-induced  
apoptosis between BXD strains, suggesting that genetic 
differences influence the severity of the effects of prenatal 
alcohol exposure.

Suggestive QTLs on chromosomes 4 and 14 were identified 
BXD strains with the C57BL/6J genetic background at these 
QTLs were more susceptible to ethanol-induced apoptosis.

Candidate genes at these two QTLs may play an important 
role in vulnerability; are potential future targets for prenatal 
screening and therapeutic intervention of FASD.

Images of the developing brainstem from a susceptible and 
resistant mouse BXD strain, treated with ethanol on embryonic 
day 9 (E9.0). Apoptotic cells were labelled using the terminal 
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 
assay. Cell nuclei of nonapoptotic cells were counterstained with 
methyl green. The arrow indicates a greater amount of cell death 
in the susceptible strain. 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 
(QTL) map of ethanol-induced apoptosis 
in the brainstem.

The likelihood ratio statistic (LRS) 

measures the association strength 

between variations in genotype and 

the phenotype (i.e. ethanol-induced 

apoptosis).

BXD mice were grouped based on presence 
of the B6 or D2 allele at each QTL interval, 
and the average number of ethanol-induced 
apoptotic cells were compared. Inheritance 
of B6 alleles is associated with significantly 
higher susceptibility to ethanol-induced 
apoptosis (p < 0.01).
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Strategy Division, Health Canada. 2. Popova, S., Lange, S., Burd, L., & Rehm, J. (2015). The Burden and Economic Impact of Fetal Alcohol Spectrum Disorder in Canada. Toronto, ON, 
Canada: Centre for Addiction and Mental Health. ISBN, 978-1. 3. Dörrie, N., Föcker, M., Freunscht, I., Hebebrand, J. (2014). Fetal alcohol spectrum disorders. European Child & 
Adolescent Psychiatry, 23(10). 4. Ogawa, T., Kuwagata, M., Ruiz, J., Zhou, F. C. (2005). Differential teratogenic effects of alcohol on embryonic development between C57BL/6J and 
DBA/2 mice: A new view. Alcohol Clinical & Experimental Research, 29(5)
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Fetal Alcohol Spectrum Disorder

Fetal Alcohol Spectrum Disorder (FASD) is caused by fetal exposure to alcohol 
consumed by mothers during pregnancy [1]. It is the most common preventable 

cause of developmental disability in 
Canada — over 3000 Canadian 
newborns diagnosed annually [2]. 
FASD is characterized by abnormal 
brain development, cognitive/learning 
deficits, behavioural issues, and/or 
specific patterns of physical defects. 

Research in mouse models implicates ethanol-induced apoptosis (i.e. 
programmed cell death) as one process contributing to disruption in early brain 
development [4]. Severity of ethanol’s effects appears to vary depending on 
genetic background; how and which genes are involved in susceptibility or 
resistance to alcohol remain largely unknown. Genetic influences may be important 
for screening, prevention, and therapeutic treatment of FASD.

Objectives

Demonstrate genetic differences in vulnerability to the 
apoptotic effects of prenatal alcohol exposure. Use 
Quantitative Trait Locus (QTL) analysis to identify genes 
involved in susceptibility or resistance to ethanol-induced 
apoptosis in the developing brain.

Conclusions

There is significant variation in vulnerability to ethanol-induced  
apoptosis between BXD strains, suggesting that genetic 
differences influence the severity of the effects of prenatal 
alcohol exposure.

Suggestive QTLs on chromosomes 4 and 14 were identified 
BXD strains with the C57BL/6J genetic background at these 
QTLs were more susceptible to ethanol-induced apoptosis.

Candidate genes at these two QTLs may play an important 
role in vulnerability; are potential future targets for prenatal 
screening and therapeutic intervention of FASD.

Images of the developing brainstem from a susceptible and 
resistant mouse BXD strain, treated with ethanol on embryonic 
day 9 (E9.0). Apoptotic cells were labelled using the terminal 
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 
assay. Cell nuclei of nonapoptotic cells were counterstained with 
methyl green. The arrow indicates a greater amount of cell death 
in the susceptible strain. 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 
(QTL) map of ethanol-induced apoptosis 
in the brainstem.

The likelihood ratio statistic (LRS) 

measures the association strength 

between variations in genotype and 

the phenotype (i.e. ethanol-induced 

apoptosis).

BXD mice were grouped based on presence 
of the B6 or D2 allele at each QTL interval, 
and the average number of ethanol-induced 
apoptotic cells were compared. Inheritance 
of B6 alleles is associated with significantly 
higher susceptibility to ethanol-induced 
apoptosis (p < 0.01).
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Images of the developing brainstem from a susceptible and 

eated with ethanol on embryonic 

e labelled using the terminal 

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 

. Cell nuclei of nonapoptotic cells were counterstained with 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 

(QTL) map of ethanol-induced apoptosis 

in the brainstem.

The likelihood ratio statistic (LRS) 

measures the association strength 

between variations in genotype and 

the phenotype (i.e. ethanol-induced 

apoptosis).

BXD mice were grouped based on presence 

of the B6 or D2 allele at each QTL interval, 

and the average number of ethanol-induced 

apoptotic cells were compared. Inheritance 

of B6 alleles is associated with significantly 

higher susceptibility to ethanol-induced 

apoptosis (p < 0.01).
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e labelled using the terminal 

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 

. Cell nuclei of nonapoptotic cells were counterstained with 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 

(QTL) map of ethanol-induced apoptosis 

in the brainstem.

The likelihood ratio statistic (LRS) 

measures the association strength 

between variations in genotype and 

the phenotype (i.e. ethanol-induced 

apoptosis).

BXD mice were grouped based on presence 

of the B6 or D2 allele at each QTL interval, 

and the average number of ethanol-induced 

apoptotic cells were compared. Inheritance 

of B6 alleles is associated with significantly 

higher susceptibility to ethanol-induced 

apoptosis (p < 0.01).
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Images of the developing brainstem from a susceptible and 

eated with ethanol on embryonic 

e labelled using the terminal 

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 

. Cell nuclei of nonapoptotic cells were counterstained with 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 

(QTL) map of ethanol-induced apoptosis 

in the brainstem.

The likelihood ratio statistic (LRS) 

measures the association strength 

between variations in genotype and 

the phenotype (i.e. ethanol-induced 

apoptosis).

BXD mice were grouped based on presence 

of the B6 or D2 allele at each QTL interval, 

and the average number of ethanol-induced 

apoptotic cells were compared. Inheritance 

of B6 alleles is associated with significantly 

higher susceptibility to ethanol-induced 

apoptosis (p < 0.01).

Bone morphogenic protein 4 (Bmp4)
Involved in a wide range of developmental processes

BXD51

genes

SNP density

p = 0.05

p = 0.63

LRS 13.510 LRS 15.655

Ubiquitin specific peptidase 1 (Usp 1)
DNA repair and response to DNA damage

Dedicator of cytokinesis 7 (Dock7) 
Cell differentiation, nervous system development

Chr 4 QTL interval Chr 14 QTL interval

4,000

6,000

2,000

55 60 62 63 65 65b 66 73 73b 77 80 86 89 90 96 98 100 101 102
**

* *

+2hr

E9.0 EtOH(+) or MD(–)

+9hr

EtOH MD
5.9 g/kg

8 µm

2× TREAT

HARVEST

EMBED &

SECTION

MOUNT &

TUNEL STAIN

CREATE

QTL MAP

ASSESS

SUSCEPTIBLE

ALLELES

IDENTIFY

CANDIDATE

GENES

isocaloric

maltose-dextran

0 50 100 150 Mb

96.0 97.0 98.0 99.0 Mb 46.0 46.5

SUSCEPTIBLE

C57BL/6J DBA/2

increased apoptosis

800

19

10

5

18.94

significant

suggestive

10.60

LRS

Nuclear factor I/A (Nfia)
Transcription regulation and DNA replication

TM2 domain containing 1 (Tm2d1)
Induction of apoptosis by extracellular signals

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X



Images of the developing brainstem from a susceptible and 
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e labelled using the terminal 

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 

. Cell nuclei of nonapoptotic cells were counterstained with 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.
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of the B6 or D2 allele at each QTL interval, 

and the average number of ethanol-induced 
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of B6 alleles is associated with significantly 
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assay. Cell nuclei of nonapoptotic cells were counterstained with 
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Images of the developing brainstem from a susceptible and 
resistant mouse BXD strain, treated with ethanol on embryonic 
day 9 (E9.0). Apoptotic cells were labelled using the terminal 
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 
assay. Cell nuclei of nonapoptotic cells were counterstained with 
methyl green. The arrow indicates a greater amount of cell death 
in the susceptible strain. 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 
(QTL) map of ethanol-induced apoptosis 
in the brainstem.
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between variations in genotype and 
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BXD mice were grouped based on presence 
of the B6 or D2 allele at each QTL interval, 
and the average number of ethanol-induced 
apoptotic cells were compared. Inheritance 
of B6 alleles is associated with significantly 
higher susceptibility to ethanol-induced 
apoptosis (p < 0.01).
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Images of the developing brainstem from a susceptible and 
resistant mouse BXD strain, treated with ethanol on embryonic 
day 9 (E9.0). Apoptotic cells were labelled using the terminal 
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 
assay. Cell nuclei of nonapoptotic cells were counterstained with 
methyl green. The arrow indicates a greater amount of cell death 
in the susceptible strain. 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 
(QTL) map of ethanol-induced apoptosis 
in the brainstem.

The likelihood ratio statistic (LRS) 

measures the association strength 

between variations in genotype and 

the phenotype (i.e. ethanol-induced 
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BXD mice were grouped based on presence 
of the B6 or D2 allele at each QTL interval, 
and the average number of ethanol-induced 
apoptotic cells were compared. Inheritance 
of B6 alleles is associated with significantly 
higher susceptibility to ethanol-induced 
apoptosis (p < 0.01).
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Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 
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Fetal Alcohol Spectrum Disorder

Fetal Alcohol Spectrum Disorder (FASD) is caused by fetal 
exposure to alcohol consumed by mothers during pregnancy 
[1]. It is the most common preventable cause of 
developmental disability in Canada — over 3000 Canadian 
newborns diagnosed annually [2]. 

FASD is characterized by abnormal brain development, 
cognitive/learning deficits, behavioural issues, and/or specific 
patterns of physical defects. 

Research in mouse models implicates ethanol-induced 
apoptosis (i.e. programmed cell death) as one process 
contributing to disruption in early brain development [4]. 
Severity of ethanol’s effects appears to vary depending on 
genetic background; how and which genes are involved in 
susceptibility or resistance to alcohol remain largely unknown. 
Genetic influences may be important for screening, 
prevention, and therapeutic treatment of FASD.

Objectives

Demonstrate genetic differences in vulnerability to the 
apoptotic effects of prenatal alcohol exposure.

Use Quantitative Trait Locus (QTL) analysis to identify genes 
involved in susceptibility or resistance to ethanol-induced 
apoptosis in the developing brain.

Conclusions

There is significant variation in vulnerability to ethanol-induced  
apoptosis between BXD strains, suggesting that genetic 
differences influence the severity of the effects of prenatal 
alcohol exposure.

Suggestive QTLs on chromosomes 4 and 14 were identified 
BXD strains with the C57BL/6J genetic background at these 
QTLs were more susceptible to ethanol-induced apoptosis.

Candidate genes at these two QTLs may play an important 
role in vulnerability; are potential future targets for prenatal 
screening and therapeutic intervention of FASD.

Figure 2. Representative images of the developing 
brainstem from a susceptible and resistant mouse BXD 
strain, treated with ethanol on embryonic day 9 (E9.0). 
Apoptotic cells were labelled using the terminal 
deoxynucleotidyl transferase dUTP nick-end labeling 
(TUNEL) assay. Cell nuclei of nonapoptotic cells were 
counterstained with methyl green. The arrow indicates a 
greater amount of cell death in the susceptible strain. 

Regions with peaks above the suggestive 
LRS threshold contain genes that are 
candidates for ethanol-induced apoptosis.

Figure 4. Whole genome Quantitative 
Trait Locus (QTL) map of ethanol-induced 
apoptosis in the brainstem. The 
likelihood ratio statistic (LRS) measures 
the association strength between 
variations in genotype and the phenotype 
(i.e. ethanol-induced apoptosis).

Figure 5. The influence of the C57BL/6J and DBA/2alleles on 
vulnerability to ethanol-induced apoptosis at the suggestive QTL 
intervals on chromosomes 4 and 14. BXD mice were grouped based on 
presence of the B6 or D2 allele at each QTL interval, and the average 
number of ethanol-induced apoptotic cells were compared. Inheritance 
of B6 alleles is associated with significantly higher susceptibility to 
ethanol-induced apoptosis (p < 0.01).

Summary of select candidate genes located in the chromosome 4 and 14 QTL intervals, 
and relevant biological processes described in Gene Ontology (GO, geneontology.org)

Figure 1.  Typical 
craniofacial defects of full 
blown Fetal Alcohol 
Spectrum Disorder 
(FASD), known as Fetal 
Alcohol Syndrome (FAS).
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Figure 3. Differences in vulnerability to ethanol-induced apoptosis in the mouse BXD panel. The number of apoptotic (TUNEL positive) cells per mm2 was 
measured in mouse embryos treated with ethanol (EtOH, red) and a maltose-dextran (MD, blue) sugar control at embryonic day 9 (E9.0). Between strains, there 
was a significant difference (p < 0.001) in apoptosis means after EtOH treatment, but no significant difference (p = 0.084) after MD treatment. Comparisons 
between treatments within strain reported significant differences (p < 0.05) in apoptosis means in the C57BL/6J, BXD 51, BXD 96, and BXD 100 strains, indicating 
that these strains show the highest vulnerability to ethanol-induced apoptosis.
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and staining for this project, and Rob Williams for assistance in QTL data analysis.
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Fetal Alcohol Spectrum Disorder

Fetal Alcohol Spectrum Disorder (FASD) is caused by fetal exposure to alcohol 
consumed by mothers during pregnancy [1]. It is the most common preventable 

cause of developmental disability in 
Canada — over 3000 Canadian 
newborns diagnosed annually [2]. 
FASD is characterized by abnormal 
brain development, cognitive/learning 
deficits, behavioural issues, and/or 
specific patterns of physical defects. 

Research in mouse models implicates ethanol-induced apoptosis (i.e. 
programmed cell death) as one process contributing to disruption in early brain 
development [4]. Severity of ethanol’s effects appears to vary depending on 
genetic background; how and which genes are involved in susceptibility or 
resistance to alcohol remain largely unknown. Genetic influences may be important 
for screening, prevention, and therapeutic treatment of FASD.

Objectives

Demonstrate genetic differences in vulnerability to the 
apoptotic effects of prenatal alcohol exposure. Use 
Quantitative Trait Locus (QTL) analysis to identify genes 
involved in susceptibility or resistance to ethanol-induced 
apoptosis in the developing brain.

Conclusions

There is significant variation in vulnerability to ethanol-induced  
apoptosis between BXD strains, suggesting that genetic 
differences influence the severity of the effects of prenatal 
alcohol exposure.

Suggestive QTLs on chromosomes 4 and 14 were identified 
BXD strains with the C57BL/6J genetic background at these 
QTLs were more susceptible to ethanol-induced apoptosis.

Candidate genes at these two QTLs may play an important 
role in vulnerability; are potential future targets for prenatal 
screening and therapeutic intervention of FASD.

Images of the developing brainstem from a susceptible and 
resistant mouse BXD strain, treated with ethanol on embryonic 
day 9 (E9.0). Apoptotic cells were labelled using the terminal 
deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) 
assay. Cell nuclei of nonapoptotic cells were counterstained with 
methyl green. The arrow indicates a greater amount of cell death 
in the susceptible strain. 

Regions with peaks above the suggestive LRS threshold    contain candidate genes for ethanol-induced apoptosis.

Whole genome Quantitative Trait Locus 
(QTL) map of ethanol-induced apoptosis 
in the brainstem.

The likelihood ratio statistic (LRS) 

measures the association strength 

between variations in genotype and 

the phenotype (i.e. ethanol-induced 

apoptosis).

BXD mice were grouped based on presence 
of the B6 or D2 allele at each QTL interval, 
and the average number of ethanol-induced 
apoptotic cells were compared. Inheritance 
of B6 alleles is associated with significantly 
higher susceptibility to ethanol-induced 
apoptosis (p < 0.01).
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